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Abstract

A simplified experimental device and a theoretical model used for measurement of thermal diffusivity and
effusivity of building materials are presented. This study is an extension of methods which employ a periodic signal,
performed in our laboratory. The impact of contact thermal resistances between the device’s different components
and the role played by the presence of the heat flowmeter have been studied. Experimental results obtained for two
materials with different thermal properties are finally presented. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Thermal diffusivity and effusivity are two essential
characteristics of the behavior of materials in an
unsteady state. Experimental techniques that allow
determining their values are based upon an identical
principle: a signal is produced on the entrance face of
a studied material sample, and the thermal response is
then recorded at another point on the material. This
signal is generally an impulse, a periodic function or a
step function.

Impulse methods with a typical flash are well-suited
to homogeneous materials and small thicknesses, such
as those of plasma deposits [1,2]. In contrast, for civil
engineering materials which exhibit a certain degree of
heterogeneity, it is suggested that the step or periodic
methods used be allowed to generate this entrance sig-
nal on the largest surface. These methods differ in
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terms of the temperature range over which they are ap-
plicable, their ease of implementation, the degree of
automation and their speed in providing results. Step
methods, by virtue of their speed, can be used over
other methods for controlling manufacturing processes
[3.4].

Methods that incorporate modulation enable cre-
ating a periodic temperature differential in a sample
thanks to a lamp-to-arc modulation; it is well-suited
for very high temperature measurements [5,6].

The periodic state methods that the authors have
been developing in their laboratory over the past ten
years are adapted to the materials presenting grains
whose larger dimension is not greater than 1/4 of the
thickness of the sample as specified in the norm NF X
10-021 [7]. Elements of the experimental set-up are
identical to those used in the standardized hot plate-
method device [7,8]. The principle behind these
methods is to generate calorific flows on the extreme
faces of a few samples by using hot plates and then to
record both surface temperature signals and flow once
the periodic state has been established. The application
of a Fourier-series decomposition of these signals leads
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Nomenclature

a thermal diffusivity [m? s~}

A damping

b thermal effusivity [J s7/Z2 m 2 K™

C calorific capacity [J K™' m™?]

D phase shift

e thickness of the sample [m]

e” penetration depth [m]

H dimensionless parameter defined in Eq.
(26)

k thermal conductivity [W m~' K]

P period of the signal [s]

r corrective coefficient of the heat flowmeter
defined in Eq. (25)

Re thermal contact resistance between the 2
samples [m* K W]

T temperature field [°C]

|T| amplitude of the temperature signal [°C]

t time [s]

X,y abscissa [m]

Greek symbols

o, B coefficients of the trigonometric functions
of the Fourier series

0 dimensionless parameter = ¢/e; + e,

W shift between flow and temperature signals

10) surfacic flow [W m ™3]

ol amplitude of the flow signal [W m™?]

n dimensionless parameter defined in Eq. (5)

w pulsation of the signal [s™']

Subscripts

f heat flowmeter

i lower sample

1 air jet

m average

s upper sample

cs contact face of the upper sample

ci contact face of lower sample

to determining both the thermal diffusivity and effus-
ivity.

The various devices developed can be differentiated
both by the manner in which their components are
assembled and by the nature of the calorific flow func-

tions generated. A first-generation device, called sym-
metrical, possesses a thermal as well as a geometrical
symmetry plan [9]. The difficulties encountered with
respect to the thermal symmetry have led us to
renounce this type of symmetry and instead to utilize

[—]
°
-

(1) : exchanging plate (4) : thermopile
(2) : samples (5) : hot plate
(3) : heat flowmeter (6) : thermostat

(7) : data acquisition central

(8) : computer

Fig. 1. Schematic diagram of the experimental apparatus.
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T(0,t) = T, = constant

Sample 1

T T(e,,}) = T, +|T,} sin(w.r + D)
es— Ko

Sample 2
est e; —+ +

|
xy @l +e,n= |(p|.sin(m.t +y)

\_ T(e, +e;,t) = T, +|T;|.sin(w.£)

Fig. 2. Description of the thermal model.

the in-source results from a non-symmetrical model
[10].

Recently, a ‘lighter’ device has been developed by
renouncing the thermal and geometrical symmetries
[11]. With this apparatus, a calorific flow is generated
on the basis of dual-pile samples, while the upper face
of the samples involved is maintained at a constant

temperature. L]

In this article, it is planned to achieve the work that
has been laid out with the help of this new apparatus.

gradient’ type with coplanar electrical couple junc-
tions [12]. It has been previously covered by a sheet
of aluminum so as to render its calibration coeffi-
cient independent of the contact material [13].
Characteristics of this particular component, along
with its influence on the determination of thermal
effusivity, are further developed in Section 6,

surface temperatures are measured with the help of
thermocouples (‘T" type) positioned, for hard ma-
terials, in grooves etched onto the surface of the
samples, and

e a lateral insulation, applied with vermiculite, which
limits thermal releases occurring at the periphery of
2. Experimental set-up the device. Such releases are generally located at the
level of the hot plate and do not serve to substan-
The experimental apparatus, as shown in Fig. 1, is tiate some of the hypotheses of unidirectional flow
made up of similar elements to those used for the ther- within the samples, as a recent study would have
mal conductivity measurement by the standardized suggested [14].
hot-plate method.
The system is composed of: The entire set-up is then placed into a tightening device
so as to reduce the thermal contact resistance between
e one hot plate (5) consisting of a square central zone the various components of the assembly.
(250 x 250 mm) and a guarded zone with an exter- Once the state has been established, a database is
nal dimension of 500 x 500 mm. The hot plate gen- compiled from records of the measurements taken,
erates a periodic calorific flow. The peripheral over the duration of a single period, of the temperature
resistance allows producing unidirectional incoming on the lower face, the temperature on the contact face
heat flow on the lower face of the samples, and incoming flow by the lower face of the samples.
e two samples of the studied material (2), These different signals are then decomposed into a
e two exchanging plates (1), maintained at constant Fourier series; this will ultimately allow determining
temperature thanks to a heat exchanging fluid (6), the thermal diffusivity and effusivity of the studied ma-
which serve to set thermal levels on both the lower terial.
and upper faces of the device,
e one thermopile (4), made up of 20 thermocouples in
series laid out in an alternating arrangement
between the central zone and the guarded zone, 3. Formulation of the problem
enables measuring the temperature differential
between these two zones, 3.1. The thermal model selected

e one calorific flowmeter (3) which allows recording
the rise in heat flow generated by the hot plate in

Considering the samples and the geometry precau-

the lower sample. This sensor is of the ‘tangential tions taken in order to limit the lateral releases, the
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[ 5=0.90

Fig. 3. Evolution of the damping as a function of # for different thickness ratios.

unidirectional heat transfer model described in Fig. 2
have been selected. The unidirectional character of the
heat transfer is verified thanks to the presence of a
thermopile on the lower face of the device (Fig. 1) in
accordance with the norm of the hot plate method [7].
Indeed, these thermopiles, placed in the device, allows
one to adjust experimental parameters in order to have
a null temperature difference between the two zones
(the central zone and the guarded zone).

The calorific flow is generated by the hot plate to
the abscissa e;+e;, which corresponds to the lower
face of the sample couple. The thicknesses of the upper
and lower samples are denoted e, and e;, respectively,
and the dimensionless parameter &= (es/e;+e;) has
been used throughout the remainder of the article.

The temperature field of the sample couple is
denoted T(x, z) and the flow density o(x, ¢).

The system of equations governing this model is as
follows:

aT(x, 1) 2T(x, 1)
ar Y ax? M

T(0, 1) = T, = constant )

T(ei +e) = Ti+ | Ti | sin(w?) 3

with: w=+/2n/P, pulsation of the signal; P, period; a,
the thermal diffusivity of the material.

The established periodic state, which represents the
solution to this system of equations, is given by the
following expression (4):

T, D= A, %) | Ti | sin(w?+ D(1, x)) )

where A(y, x) and D(y, x) represent the damping and
the phase shift, respectively, for the signal in terms of
temperature 7(x, ¢) in comparison with the signal
T(e;+es, 1). They are expressed as a function of the
dimensionless parameter #, as given in (5):

et+e o ei+es 1
= —_— —_ 5
=3 Vu~ "2 & ©)

with: e* the penetration depth of the thermal signal
into the material.

The expressions, in terms of x=e, for both the
damping and phase shift are given by Eqgs. (6) and (7),
respectively, as a function of either the ratio é or the
penetration depth e™:

__ [ch(4nd) — cos(44d)
A= \/ “eh(dn) — costn)

h<%) cos(%)

MNe o) _1Tul

Ch(zes+ei)cos(2es+ei) | T |
e* e*

B 1g(2nd)\ tg(n)
D(r,, 5) = Arctg (th(2115)) ArCtg (th(zﬂ) )

es + ¢
tg _e*

©®)
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5=0.25

Fig. 4. Evolution of the phase shift as a function of 5 for different thickness ratios.

For small values of #, expression (6) can be approxi-
mated by: A(n, 6)=24 and expression (7) tends towards
zero. Furthermore, at each instant, the temperature
profile of the samples is nearly linear. Samples exhibit
a behavior that is indicative of a medium of extremely
small thickness in which perturbations are transmitted
quasi-instantaneously to all points. It is therefore im-
possible to determine the thermal diffusivity in this
particular case. For large values of #, the samples exhi-
bit a practically semi-infinite behavior; heat transfer is
thus localized primarily near the lower face of the
sample couple. If the ratio ege™ is very less than
e, tefe”, it then becomes, in this case as well, difficult
to obtain the thermal diffusivity.

Figs. 3 and 4, in which variation curves of both ex-
pressions (6) and (7) are presented as a function of 7,
serve to illustrate the previous remarks. It can be
observed in Fig. 3 that the damping 4 decreases as 5
increases for different thickness ratios 6. This damping
gets even further reduced as a result of the thickness of
the upper sample being less than that of the lower
sample.

The expression of the surfacic flow is given by:

o(x, )=l ¢| sin(wt+1) ©)

with ¥ representing the shift between signals ¢(x, t)
and T(x, 1), and |o| the amplitude of the signal. Their
expressions are given in Eqgs. (9) and (10), respectively,
with respect to #:

W(n, e + e5)
2
= g - Arctg(%) + Arctg(thCm)tg(2n))  (9)
0 |=I T; | by/a, | D + cos(hn) (10)

ch(4n) — cos(4n)

with b the thermal effusivity of the material.
For small values of the parameter #, expression (10)
can be approximated by

lel=1Ti|

b
e + e

where k is the thermal conductivity of the tested ma-
terial. It is naturally found that the behavior exhibited
at the ‘middle of the extremely small thickness’ will
not enable determining the thermal effusivity. In con-
trast, for n values of greater than 1.8, expression (10)
turns out to be independent of #; | ¢ |=| T} | b/w.

3.2. Application to the determination of thermal
diffusivity and effusivity

In the established state, the decomposition of the
measured periodic signals T(e;+e,, t) and Te,, ¢) into
a Fourier series allows determining, with the help of
the fundamental, both the damping A(y, ) and the
phase shift D(n, 0), as given by expressions (11) and
(12):
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Fig. 5. Evolution of the function f{, ¢).
Ay, 8) = o2+ B 1" composition into a Fourier series of experimental sig-
1, 0) = o? +ﬁ12 an nals T(es, ¢) and T(e;+es, 1).
The experimental values obtained for A(y,d) and
D(n, ) have led, in conjunction with the curves dis-
played in Figs. 3 and 4, to two values for #. Their util-
D@, 8) = Arctg(ﬁ—'“) — Arctg(&) (12) ization makes it possible to identify the thermal
%m % diffusivity, thanks to expression (5).

with (o, Bm) and (o, f;) representing the coefficients
of the trigonometric functions appearing in the de-

12

Similarly, use of the flow signal enables, by employ-
ing expression (10), identifying the thermal effusivity of
the studied material. Nevertheless, in order to incor-

10

g(n.d)

4 520,75

=066 5=0.5

/=0,25

Fig. 6. Evolution of the function g(n, §).
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Fig. 7. Evolution of the function G(n, 6).

porate the presence of the heat flowmeter, it is essential
to apply a correction factor to the obtained value (see
Section 6).

Initial analyses, conducted on the basis of theoretical
expressions, have revealed that this method was not
applicable over the range of small # values and that
only b could be determined for the large » values. In
light of previous remarks, it will be attempted to ident-
ify, in the next section, the effective range of # values
for determining the magnitudes of thermophysical
properties.

4. Choice of experimental parameters

4.1. Identification of the most advantageous conditions
Jor determining the magnitudes of thermophysical
properties

The level of uncertainty encountered in determining
n values by solving the system of Eqgs. (6) and (7) (or
by applying the curves in Figs. 3 and 4) is given in ac-
cordance with the experimental uncertainty derived
from expressions (13) and (14):

An = AA(y, 6)f(n, 0) 13)

An = AD(n, 6)g(n, 9) (14

In Fig. 5, the shape of the function f{, ) has been
plotted for various values of the ratio . These curves

display a minimum at &~ 1, and the two unusable
zones mentioned in Section 3 are also apparent.

It can be noted that for the studied configurations,
only three—35=0.50, 0.66 and 0.75—allow satisfying
fln, 8) < 5 for 5 values lying between 0.7 and 1.8.

In Fig. 6, the shape of the function g(x, 8) is pre-
sented. From a # value equal to 0.5, all of the con-
figurations being studied herein, except that for which
6=0.90, do satisfy the condition: g(, é) < 2. This
therefore proves that among the studied configur-
ations, the most promising are: 6 =0.5, 0.66 and 0.75.
Moreover, it would be most effective to position this
value in the range of [0.7-1.8] by seeking as a priority
those # values which tend towards 1 in order to mini-
mize uncertainty in the determination of the desired
thermophysical characteristics. In the following section,
it will be ascertained whether or not the interval [0.7—
1.8] for the parameter n is equally as effective with
respect to the experimental program.

4.2. Uncertainty in the experimental program

On the basis of expressions (11) and (12), the uncer-
tainties present in the experimental determination of
both the damping and phase shift are obtained from
Egs. (15) and (16), respectively, in which the parameter
# has been introduced through expressions (6) and (7):

AT
. F 15
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Fig. 8. Evolution of F(5 8)f(n, 6)/n as a function of # for different values of ¢.

A
ADG1.8) = GO, O)7 7 (16)

with AT representing the uncertainty for each tempera-
ture measurement.

Fig. 7 displays the evolution of the function G(y, é)
for the three indicated values of J. It can be noted that
for large values of #, the uncertainty G(y, d) increases

40

rapidly. The material’s infinite semi-wall behavior, as
pointed out in Section 3, has been detected in this
instance; the interface of the two test tubes, at too
great a distance from the lower face (value of 4 is
small), barely receive the signal being emitted by the
hot plate. The interval [0.7-1.8] selected in Section 4.1
corresponds to a zone of weak amplitude for the func-
tion G(n, &), which is of distinct experimental interest.

[
o
T

6=0,75

(G(n,8)-8(n.d))/z

-
o
—

$=0,66 8=0,5

1 1,5 2
n

Fig. 9. Evolution of G(n, 8)g(n, 8)/n as a function of # for different values of 4.
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Fig. 10. Evolution of H(n) as a function of n (6=0.5).

The same conclusion can be drawn from a study of the
function F(y, 6). The determination of thermal diffu-
sivity from the use of damping thus proves to be more
effective from an experimental standpoint than that
involving the phase shift. The configuration with a ¢
value of 0.50, i.e. when the two test tubes have the
same thickness, turns out to be the most effective.

4.3. Uncertainty with respect to the determination of
thermal diffusivity and effusivity

The relative uncertainty of the thermal diffusivity is
obtained from expressions (17) and (18) by using the
damping and the phase shift, respectively:

Aa _, Fin, 8)fn,3) AT

—_ 17
a n [ T | (17

Aa 2G(n, 0)g(n, 6) AT

18
a n | Ti | (18)

In Figs. 8 and 9, the functions

F(n, )1y, 8) and G(n, d)g(n, 6)
n 1

have been plotted. The configuration with §=0.5 is
revealed to be the most effective for both of the deter-
minations. By means of the phase shift, for

Aa AT
-1, — = 10—
n €[0.7-1.8], - OITiI

is obtained. In contrast, by employing the damping,

the relative uncertainty of the thermal diffusivity is
lower for # € [1.05-1.8].

The uncertainty in the determination of thermal
effusivity can be obtained by expression (19):

Alol| Al6i]
lol |61

The shape of the function H(y) is shown in Fig. 10.
For a low penetration depth of the signal, which corre-
sponds herein to n>1.8, the function H(n) is just
about zero. The thermal effusivity b then becomes
independent of », which provides for the highest-qual-
ity determination.

In conclusion, except for small values of #, it will
always be possible to determine a thermal character-
istic of the dynamic state. The range n € [1.05-1.8] will
allow identifying the thermal diffusivity which displays
a minimal uncertainty, by using the temperature sig-
nal’s damping rather than its phase shift. For 5-cm
thick test tubes, this would place the period of the
emitted signal inside the interval [0.5-1.8 h] for the
marble and [0.25-1 h] for the polystyrene.

Ab A
5 =Hm

5 (19

5. Influence of contact resistance

The assembly of the various components within the
experimental set-up can serve to introduce contact re-
sistance, primarily at those interfaces where the ther-
mocouples are attached. In order to study their
influence on results, the initial model has been modi-
fied by introducing a contact resistance Rc either on
the interface of the two test tubes or on the upper
exchanging plate—upper sample interface.
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Fig. 11. Influence of the contact resistance at the interface of 2 samples on damping as a function of the parameter y (6 =0.5).

5.1. Case of a thermal contact resistance between the
two samples

The resolution of this new model incorporates a
dimensionless parameter Rc™= Re(k/e), where k is the
thermal conductivity of the tested material and Rc the
contact resistance between the two samples. This
model leads to developing expressions both for the
damping A.(n, 6) and As(n, &) of the signal T{e; + e,

t) on either side of the contact resistance and for
D.(n, 8) and D(n, §) which correspond to the phase
shifts. The introduction of experimental values into
these expressions enables making a determination of
Rc*. The numerous tests conducted on marble samples
have shown that Rc¢™ is positioned in the interval
[0.015-0.04], which corresponds to a contact resistance
value of less than 0.008°C m?*/W for the 5-cm thick
test tubes. In the case of the polystyrene, this resistance

0,8
0,7
0.6
0,5

0.4

A(m)

0,3
0,2

0.1

0

0 1

Fig. 12. Damping as a function of the parameter # (6=0.5 and §=0.75).
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Fig. 13. Measure of the flow and temperature on the lower sample face.

is once again lower, which is why only the results con-
cerning the marble will be mentioned in this section.

In the case of the configuration with §=0.5, Fig. 11
presents the results concerning the unfavorable case of
Rc*=0.05. In this figure, the curves 44(n, §) and Ay,
&) have been plotted; the curve A(y, ), which is as-
sociated with the case of a zero resistance, has also
been graphed. A comparison of the curve A(y, 0.5)
with the average curve defined by Au(y,d) =
1(Aes(n, 0.5) + Aci(n, 0.5)) reveals that these two curves
are practically indistinguishable; their maximum devi-
ation is 0.1%. Similarly, a maximum deviation of
0.1% has been recorded between the curve D(y, 0.5)
and the average curve defined by
Dm(n’ 5) = %(Dcs(nv 05) + Dci(’/la 05))

In the configuration with §=0.5, one can therefore
eliminate the measurement of the contact resistance by
continuing to apply results that correspond to the case
of a zero contact resistance, provided the average of
the readings recorded by the two thermocouples placed
to the right of the interface on each sample has been
used.

In contrast, this process can no longer be applied
once the ratio é exceeds 0.5. For § =0.75, for example,
the curves An(n,0.75) and A(y,0.75) are then no
longer indistinguishable; a deviation reaching as high
as 2% has been recorded. This result can be explained
by means of a simple analysis: since the air jet is purely
resistive, the curve thereby corresponds to the damping
in the middle of the air jet. If the equivalent thickness
of the air jet were denoted e, such that Re=(er/k), a
configuration with d =e¢y/(e,+ ¢;) corresponds in fact to
a configuration with

(1/2 — d)eL
es+e+eL

5 = es+e /2 _
es + e + e

Only the configuration 6=0.5 allows ¢*=4, which
explains why curves A(n, 0.5) and A,(n, 0.5) are almost

indistinguishable. As the value of § grows further from
0.50, A(n, 6) and An(n, §) will tend to grow further
apart; they will become indistinguishable only when
the behavior of the semi-infinite wall (large » value)
has been identified.

The configuration corresponding to a §=0.5 thus
makes it possible to continue utilizing the model pre-
sented without taking the contact resistance into
account; the error involved in determining » with the
help of curves A(x) and D(y) remains less than 0.1%.

5.2. Case of a contact resistance between the upper
sample and the exchanging plate

The presence of this contact resistance means that
the constant-temperature hypothesis can no longer be
satisfied on the upper face of the sample couple. The
new model exhibits the dimensionless parameter
Rc™ = Rck/(es+ ). In Fig. 12, the:curves A(n, 0.5), as-
sociated with Rc*=0 and Rc*=0.05 have been -com-
pared. A sizable deviation between: the two curves for
large values of the signal’s penetration depth-(small y
value) can be observed, yet this deviation quickly
becomes small for #>1 (maximum deviation of
1.3%). The comparison with the configuration in
which §=0.75 yields smaller deviations between the
results from the two models (a maximum deviation of
0.7%).

In a similar analysis as the one presented in Section
5.1, the following is obtained..

(1-9)

=04+ —,
e+ e + e

which demonstrates that the deviation between the two
models decreases as & increases.

A similar set of conclusions can be drawn with
respect to the phase shift, albeit with less sizable devi-
ations between the two models.
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For example, for a § value of 0.50, neglecting this
contact resistance could cause an error in the determi-
nation of # that is larger than the one mentioned in
the preceding section. It is therefore recommended
herein to remove the thermocouple fixed on the upper
face of the sample couple in order to limit the size of
the error; this particular thermocouple is intended to
verify the constant-temperature hypothesis during a
pre-control phase of the experimental parameters.

6. Influence of the presence of the heat flowmeter on the
determination of thermal effusivity

6.1. Problem context

The presence of the heat flowmeter serves to modify
the temperature field inside the device. Considering the
design of the heat flowmeter used, the two following
hypotheses for modeling their behavior have been
selected:

e a thermal heat flowmeter is assimilated into a homo-
geneous layer of apparent thermal resistance Ry and
calorific capacity Cr, and

e a sensor, capable of reading in any state, represents
the instantaneous flow through the middle plane of
the heat flowmeter.

The temperature field in the heat flowmeter, with
thickness ep is denoted by T¢(y, ¢) and the surfacic
flow by @¢(y, 1).

As indicated in Fig. 13, the two experimentally-
accessible signals are the flow in the middle plane
of the heat flowmeter (0, ¢) and the temperature
Tt(er/2, t) on the surface of the sample in contact with
this heat flowmeter. The problem then consists of
determining, on the basis of these two indicators, the
incoming heat flow through the lower face of the
sample couple.

6.2. Resolution of the problem

Variable components of both the temperature field
T¢(y, t) and the surfacic flow ¢¢(y, t) in the heat flow-
meter provide a solution to the following system of
simultaneous equations:

0Te(y, 8 _ afasz(y’ 1]

2
at 332 0
Tf(f;f., z) = Tei+ew ) =I Ti | +T5 sin(o1) 1)

90, ) = _kf(%t_)) =| @; | sin(wr+0a) (22)
y y=0
(pf(ez_f’ t) = ¢lei+es, 1) (23)

with a, and k; representing the equivalent thermal dif-
fusivity and conductivity of the heat flowmeter, re-
spectively, and ey its thickness.

The established periodic state, which is the solution
to this system, can then be written as (24):

(4 .
<pf(3f,t) — e ten ) =r || sinoi+xty) (Q4)

with:

H? T
rz\/l—Hsin(a)+T with H:wcf:(p‘ll (25)
f

2 R;C
y = _H cos(a) — %— sin(2a) — b

. @26

which enables deriving the new expression for the ther-
mal effusivity 4 given by (26):

[ | 1
=rbnc
VTi | Jox(2)

with b, being the value of the thermal effusivity before
correction. While such a correction turns out to be vital
in the case of an insulating material like polystyrene
(r = 0.60), it is absolutely useless for marble. These
results can be explained by the significance of the ratio
Ct/bne within the correction. The parameter H can
indeed be expressed in the form given by (27):

_ Vo G
x(1) bre
In the case of the marble, operations carried out
around #=1.8 make it possible to determine the ther-
mal diffusivity and effusivity with a good level of accu-
racy, while maintaining the corrective coefficient r
equal to 1, which yields a period of 30 min for a 5-cm
thick sample.
In contrast, for the polystyrene, the zone with the
most accurate measurement of effusivity is the one
with the highest correction due to the flowmeter.

b=r (26)

@7

7. Experimental results

For the various series of tests carried out, two ma-
terials possessing very distinct thermal properties have
been employed: expanded polystyrene and marble. The
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Fig. 14. Evolution of the thermal diffusivity as a function of temperature: expanded polystyrene.

samples used were 5 cm thick, and the period of the
signal was set at 30 min.

By adopting an operating schedule of one day for
the tests on marble and a half-day for those on poly-
styrene, it has been verified that the constant-tempera-
ture condition on the upper face of the sample couple
is respected. Thus, it has been possible both to remove
the thermocouple fixed onto the upper face and to

eliminate the influence of the contact resistance
between the sample couple and the upper exchanging
plate.

All of the results presented in this section concern
tests conducted on samples with a similar thickness
(6=0.5), which enables applying the theoretical model
described in Section 3, even in the presence of contact
resistance between the two samples.
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Fig. 15. Evolution of the thermal diffusivity as a function of temperature: marble.
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Fig. 16. Evolution of the thermal effusivity as a function of temperature: expanded polystyrene.

Thus, in order to minimize the correction necessary
in the determination of thermal effusivity, the ‘tangen-
tial gradient’-type of flowmeter has been used.

In the different figures, results of the thermal dif-
fusivity and effusivity are function of the average tem-
perature. Exploited temperature ranges are those of
building’s walls in tempered climates. Temperatures of
tested material remain understood between 0 and
50°C; for a same test in unsteady state, the tempera-

ture difference between the two faces of the sample
does not exceed 10°C.

7.1. Determination of the thermal diffusivity

In order to provide a reference against which our ex-
perimental results can be compared, the thermal diffu-
sivity of the samples was first measured by employing
a method developed previously [15]. For the two ma-
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Fig. 17. Evolution of the thermal effusivity as a function of temperature: marble.
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terials tested, Figs. 14 and 15 display the evolution of
the thermal diffusivity as a function of temperature for
both the polystyrene and the marble, respectively.
Over the studied temperature range, it can be noticed
that the two methods yield analogous results; neverthe-
less, a 2% deviation has been recorded in the case of
the expanded polystyrene. Considering the operative
precautions taken, it would be reasonable to estimate
the accuracy of the diffusivity measurement by means
of the method described herein at approximately 6%.

7.2. Determination of the thermal effusivity

From measurements of both thermal conductivity
and diffusivity, it is possible to compute the effusivity &
by b = (k/+/a). This value has been taken as the refer-
ence, by virtue of having measured beforehand the
conductivity, using the standardized, guarded hot-plate
method, and the diffusivity with the method cited pre-
viously [15].

Figs. 16 and 17 exhibit the evolution of the thermal
effusivity as a function of temperature for both the
polystyrene and the marble, respectively. These figures
enable comparing the results obtained by our method
with those computed using the formula: (k/./a).

In the case of the marble, a maximal deviation of
4.5% has been observed, while this deviation can reach
15% for the polystyrene.

This sizable deviation for insulating materials can be
explained, as pointed out in Section 6, by the pertur-
bation induced from the presence of the heat flow-
meter, thereby necessitating the application of a
significant correction factor to the measured value. It
would therefore be desirable, for this type of material,
to use a heat flowmeter with a lower calorific capacity.

8. Conclusion

The experiment performed herein has proved to be
quite well-suited to non-homogeneous building ma-
terials; moreover, it requires the same components as
those used in the standardized, guarded hot-plate
method.

The work carried out has enabled both evaluating
the relative importance of the various experimental
parameters involved and defining the most effective
range of measurement for the different tests. It has
also shown how measuring the contact resistance can
be performed unsuccessfully as well as what the influ-
ence of the presence of the heat flowmeter may be on
thermal effusivity results.

These measurements have allowed computing the
thermal diffusivity with a high degree of accuracy,
thanks to an experimental set-up that is as easy to
assemble as the one obtained from the periodic state

methods developed previously. A determination of
thermal effusivity can also be obtained, in the case of
conductor materials, with good accuracy, while in the
case of insulating materials, the relevance of the results
is closely tied to the performance of the heat flowmeter
used. In this case, it would be appropriate to use a
heat flowmeter with a lower calorific capacity.
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